Constrained maximum correntropy adaptive filtering
نویسندگان
چکیده
Constrained adaptive filtering algorithms inculding constrained least mean square (CLMS), constrained affine projection (CAP) and constrained recursive least squares (CRLS) have been extensively studied in many applications. Most existing constrained adaptive filtering algorithms are developed under mean square error (MSE) criterion, which is an ideal optimality criterion under Gaussian noises. This assumption however fails to model the behavior of non-Gaussian noises found in practice. Motivated by the robustness and simplicity of maximum correntropy criterion (MCC) in non-Gaussian impulsive noises, this paper proposes a new adaptive filtering algorithm called constrained maximum correntropy criterion (CMCC). Specifically, CMCC incorporates a linear constraint into a MCC filter to solve a constrained optimization problem explicitly. The proposed adaptive filtering algorithm is easy to implement and has low computational complexity, and in terms of convergence accuracy (say lower mean square deviation) and stability, can significantly outperform those MSE based constrained adaptive algorithms in presence of heavy-tailed impulsive noises. Additionally, the mean square convergence behaviors are studied under energy conservation relation, and a sufficient condition to ensure the mean square convergence and the steady-state mean square deviation (MSD) of the proposed algorithm are obtained. Simulation results confirm the theoretical predictions under both Gaussian and nonGaussian noises, and demonstrate the excellent performance of the novel algorithm by comparing it with other conventional methods.
منابع مشابه
Adaptive-Filtering-Based Algorithm for Impulsive Noise Cancellation from ECG Signal
Suppression of noise and artifacts is a necessary step in biomedical data processing. Adaptive filtering is known as useful method to overcome this problem. Among various contaminants, there are some situations such as electrical activities of muscles contribute to impulsive noise. This paper deals with modeling real-life muscle noise with α-stable probability distribution and adaptive filterin...
متن کاملGeneralized Correntropy for Robust Adaptive Filtering
1. Institute of Artificial Intelligence and Robotics, Xi'an Jiaotong University, Xi'an, 710049, China 2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China 3. Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611 USA Abstract—As a robust nonlinear similarity measure in kernel space, correntropy has received increasing attent...
متن کاملMaximum Correntropy Adaptive Filtering Approach for Robust Compressive Sensing Reconstruction
Robust compressive sensing(CS) reconstruction has become an attractive research topic in recent years. Robust CS aims to reconstruct the sparse signals under non-Gaussian(i.e. heavy tailed) noises where traditional CS reconstruction algorithms may perform very poorly due to utilizing l2 norm of the residual vector in optimization. Most of existing robust CS reconstruction algorithms are based o...
متن کاملConvex regularized recursive maximum correntropy algorithm
In this brief, a robust and sparse recursive adaptive filtering algorithm, called convex regularized recursive maximum correntropy (CR-RMC), is derived by adding a general convex regularization penalty term to the maximum correntropy criterion (MCC). An approximate expression for automatically selecting the regularization parameter is also introduced. Simulation results show that the CR-RMC can...
متن کاملRobust Hammerstein Adaptive Filtering under Maximum Correntropy Criterion
The maximum correntropy criterion (MCC) has recently been successfully applied to adaptive filtering. Adaptive algorithms under MCC show strong robustness against large outliers. In this work, we apply the MCC criterion to develop a robust Hammerstein adaptive filter. Compared with the traditional Hammerstein adaptive filters, which are usually derived based on the well-known mean square error ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Signal Processing
دوره 140 شماره
صفحات -
تاریخ انتشار 2017